3.2089 \(\int \frac{1}{\sqrt{a+\frac{b}{x^4}} x^4} \, dx\)

Optimal. Leaf size=212 \[ -\frac{\sqrt [4]{a} \sqrt{\frac{a+\frac{b}{x^4}}{\left (\sqrt{a}+\frac{\sqrt{b}}{x^2}\right )^2}} \left (\sqrt{a}+\frac{\sqrt{b}}{x^2}\right ) \text{EllipticF}\left (2 \cot ^{-1}\left (\frac{\sqrt [4]{a} x}{\sqrt [4]{b}}\right ),\frac{1}{2}\right )}{2 b^{3/4} \sqrt{a+\frac{b}{x^4}}}+\frac{\sqrt [4]{a} \sqrt{\frac{a+\frac{b}{x^4}}{\left (\sqrt{a}+\frac{\sqrt{b}}{x^2}\right )^2}} \left (\sqrt{a}+\frac{\sqrt{b}}{x^2}\right ) E\left (2 \cot ^{-1}\left (\frac{\sqrt [4]{a} x}{\sqrt [4]{b}}\right )|\frac{1}{2}\right )}{b^{3/4} \sqrt{a+\frac{b}{x^4}}}-\frac{\sqrt{a+\frac{b}{x^4}}}{\sqrt{b} x \left (\sqrt{a}+\frac{\sqrt{b}}{x^2}\right )} \]

[Out]

-(Sqrt[a + b/x^4]/(Sqrt[b]*(Sqrt[a] + Sqrt[b]/x^2)*x)) + (a^(1/4)*Sqrt[(a + b/x^4)/(Sqrt[a] + Sqrt[b]/x^2)^2]*
(Sqrt[a] + Sqrt[b]/x^2)*EllipticE[2*ArcCot[(a^(1/4)*x)/b^(1/4)], 1/2])/(b^(3/4)*Sqrt[a + b/x^4]) - (a^(1/4)*Sq
rt[(a + b/x^4)/(Sqrt[a] + Sqrt[b]/x^2)^2]*(Sqrt[a] + Sqrt[b]/x^2)*EllipticF[2*ArcCot[(a^(1/4)*x)/b^(1/4)], 1/2
])/(2*b^(3/4)*Sqrt[a + b/x^4])

________________________________________________________________________________________

Rubi [A]  time = 0.0843018, antiderivative size = 212, normalized size of antiderivative = 1., number of steps used = 4, number of rules used = 4, integrand size = 15, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.267, Rules used = {335, 305, 220, 1196} \[ -\frac{\sqrt [4]{a} \sqrt{\frac{a+\frac{b}{x^4}}{\left (\sqrt{a}+\frac{\sqrt{b}}{x^2}\right )^2}} \left (\sqrt{a}+\frac{\sqrt{b}}{x^2}\right ) F\left (2 \cot ^{-1}\left (\frac{\sqrt [4]{a} x}{\sqrt [4]{b}}\right )|\frac{1}{2}\right )}{2 b^{3/4} \sqrt{a+\frac{b}{x^4}}}+\frac{\sqrt [4]{a} \sqrt{\frac{a+\frac{b}{x^4}}{\left (\sqrt{a}+\frac{\sqrt{b}}{x^2}\right )^2}} \left (\sqrt{a}+\frac{\sqrt{b}}{x^2}\right ) E\left (2 \cot ^{-1}\left (\frac{\sqrt [4]{a} x}{\sqrt [4]{b}}\right )|\frac{1}{2}\right )}{b^{3/4} \sqrt{a+\frac{b}{x^4}}}-\frac{\sqrt{a+\frac{b}{x^4}}}{\sqrt{b} x \left (\sqrt{a}+\frac{\sqrt{b}}{x^2}\right )} \]

Antiderivative was successfully verified.

[In]

Int[1/(Sqrt[a + b/x^4]*x^4),x]

[Out]

-(Sqrt[a + b/x^4]/(Sqrt[b]*(Sqrt[a] + Sqrt[b]/x^2)*x)) + (a^(1/4)*Sqrt[(a + b/x^4)/(Sqrt[a] + Sqrt[b]/x^2)^2]*
(Sqrt[a] + Sqrt[b]/x^2)*EllipticE[2*ArcCot[(a^(1/4)*x)/b^(1/4)], 1/2])/(b^(3/4)*Sqrt[a + b/x^4]) - (a^(1/4)*Sq
rt[(a + b/x^4)/(Sqrt[a] + Sqrt[b]/x^2)^2]*(Sqrt[a] + Sqrt[b]/x^2)*EllipticF[2*ArcCot[(a^(1/4)*x)/b^(1/4)], 1/2
])/(2*b^(3/4)*Sqrt[a + b/x^4])

Rule 335

Int[(x_)^(m_.)*((a_) + (b_.)*(x_)^(n_))^(p_), x_Symbol] :> -Subst[Int[(a + b/x^n)^p/x^(m + 2), x], x, 1/x] /;
FreeQ[{a, b, p}, x] && ILtQ[n, 0] && IntegerQ[m]

Rule 305

Int[(x_)^2/Sqrt[(a_) + (b_.)*(x_)^4], x_Symbol] :> With[{q = Rt[b/a, 2]}, Dist[1/q, Int[1/Sqrt[a + b*x^4], x],
 x] - Dist[1/q, Int[(1 - q*x^2)/Sqrt[a + b*x^4], x], x]] /; FreeQ[{a, b}, x] && PosQ[b/a]

Rule 220

Int[1/Sqrt[(a_) + (b_.)*(x_)^4], x_Symbol] :> With[{q = Rt[b/a, 4]}, Simp[((1 + q^2*x^2)*Sqrt[(a + b*x^4)/(a*(
1 + q^2*x^2)^2)]*EllipticF[2*ArcTan[q*x], 1/2])/(2*q*Sqrt[a + b*x^4]), x]] /; FreeQ[{a, b}, x] && PosQ[b/a]

Rule 1196

Int[((d_) + (e_.)*(x_)^2)/Sqrt[(a_) + (c_.)*(x_)^4], x_Symbol] :> With[{q = Rt[c/a, 4]}, -Simp[(d*x*Sqrt[a + c
*x^4])/(a*(1 + q^2*x^2)), x] + Simp[(d*(1 + q^2*x^2)*Sqrt[(a + c*x^4)/(a*(1 + q^2*x^2)^2)]*EllipticE[2*ArcTan[
q*x], 1/2])/(q*Sqrt[a + c*x^4]), x] /; EqQ[e + d*q^2, 0]] /; FreeQ[{a, c, d, e}, x] && PosQ[c/a]

Rubi steps

\begin{align*} \int \frac{1}{\sqrt{a+\frac{b}{x^4}} x^4} \, dx &=-\operatorname{Subst}\left (\int \frac{x^2}{\sqrt{a+b x^4}} \, dx,x,\frac{1}{x}\right )\\ &=-\frac{\sqrt{a} \operatorname{Subst}\left (\int \frac{1}{\sqrt{a+b x^4}} \, dx,x,\frac{1}{x}\right )}{\sqrt{b}}+\frac{\sqrt{a} \operatorname{Subst}\left (\int \frac{1-\frac{\sqrt{b} x^2}{\sqrt{a}}}{\sqrt{a+b x^4}} \, dx,x,\frac{1}{x}\right )}{\sqrt{b}}\\ &=-\frac{\sqrt{a+\frac{b}{x^4}}}{\sqrt{b} \left (\sqrt{a}+\frac{\sqrt{b}}{x^2}\right ) x}+\frac{\sqrt [4]{a} \sqrt{\frac{a+\frac{b}{x^4}}{\left (\sqrt{a}+\frac{\sqrt{b}}{x^2}\right )^2}} \left (\sqrt{a}+\frac{\sqrt{b}}{x^2}\right ) E\left (2 \cot ^{-1}\left (\frac{\sqrt [4]{a} x}{\sqrt [4]{b}}\right )|\frac{1}{2}\right )}{b^{3/4} \sqrt{a+\frac{b}{x^4}}}-\frac{\sqrt [4]{a} \sqrt{\frac{a+\frac{b}{x^4}}{\left (\sqrt{a}+\frac{\sqrt{b}}{x^2}\right )^2}} \left (\sqrt{a}+\frac{\sqrt{b}}{x^2}\right ) F\left (2 \cot ^{-1}\left (\frac{\sqrt [4]{a} x}{\sqrt [4]{b}}\right )|\frac{1}{2}\right )}{2 b^{3/4} \sqrt{a+\frac{b}{x^4}}}\\ \end{align*}

Mathematica [C]  time = 0.0098372, size = 49, normalized size = 0.23 \[ -\frac{\sqrt{\frac{a x^4}{b}+1} \, _2F_1\left (-\frac{1}{4},\frac{1}{2};\frac{3}{4};-\frac{a x^4}{b}\right )}{x^3 \sqrt{a+\frac{b}{x^4}}} \]

Antiderivative was successfully verified.

[In]

Integrate[1/(Sqrt[a + b/x^4]*x^4),x]

[Out]

-((Sqrt[1 + (a*x^4)/b]*Hypergeometric2F1[-1/4, 1/2, 3/4, -((a*x^4)/b)])/(Sqrt[a + b/x^4]*x^3))

________________________________________________________________________________________

Maple [C]  time = 0.01, size = 198, normalized size = 0.9 \begin{align*} -{\frac{1}{{x}^{3}} \left ( \sqrt{{i\sqrt{a}{\frac{1}{\sqrt{b}}}}}\sqrt{b}{x}^{4}a-i\sqrt{a}\sqrt{-{ \left ( i\sqrt{a}{x}^{2}-\sqrt{b} \right ){\frac{1}{\sqrt{b}}}}}\sqrt{{ \left ( i\sqrt{a}{x}^{2}+\sqrt{b} \right ){\frac{1}{\sqrt{b}}}}}bx{\it EllipticF} \left ( x\sqrt{{i\sqrt{a}{\frac{1}{\sqrt{b}}}}},i \right ) +i\sqrt{a}\sqrt{-{ \left ( i\sqrt{a}{x}^{2}-\sqrt{b} \right ){\frac{1}{\sqrt{b}}}}}\sqrt{{ \left ( i\sqrt{a}{x}^{2}+\sqrt{b} \right ){\frac{1}{\sqrt{b}}}}}bx{\it EllipticE} \left ( x\sqrt{{i\sqrt{a}{\frac{1}{\sqrt{b}}}}},i \right ) +\sqrt{{i\sqrt{a}{\frac{1}{\sqrt{b}}}}}{b}^{{\frac{3}{2}}} \right ){\frac{1}{\sqrt{{\frac{a{x}^{4}+b}{{x}^{4}}}}}}{b}^{-{\frac{3}{2}}}{\frac{1}{\sqrt{{i\sqrt{a}{\frac{1}{\sqrt{b}}}}}}}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(1/x^4/(a+b/x^4)^(1/2),x)

[Out]

-((I*a^(1/2)/b^(1/2))^(1/2)*b^(1/2)*x^4*a-I*a^(1/2)*(-(I*a^(1/2)*x^2-b^(1/2))/b^(1/2))^(1/2)*((I*a^(1/2)*x^2+b
^(1/2))/b^(1/2))^(1/2)*b*x*EllipticF(x*(I*a^(1/2)/b^(1/2))^(1/2),I)+I*a^(1/2)*(-(I*a^(1/2)*x^2-b^(1/2))/b^(1/2
))^(1/2)*((I*a^(1/2)*x^2+b^(1/2))/b^(1/2))^(1/2)*b*x*EllipticE(x*(I*a^(1/2)/b^(1/2))^(1/2),I)+(I*a^(1/2)/b^(1/
2))^(1/2)*b^(3/2))/((a*x^4+b)/x^4)^(1/2)/x^3/b^(3/2)/(I*a^(1/2)/b^(1/2))^(1/2)

________________________________________________________________________________________

Maxima [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{1}{\sqrt{a + \frac{b}{x^{4}}} x^{4}}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/x^4/(a+b/x^4)^(1/2),x, algorithm="maxima")

[Out]

integrate(1/(sqrt(a + b/x^4)*x^4), x)

________________________________________________________________________________________

Fricas [F]  time = 0., size = 0, normalized size = 0. \begin{align*}{\rm integral}\left (\frac{\sqrt{\frac{a x^{4} + b}{x^{4}}}}{a x^{4} + b}, x\right ) \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/x^4/(a+b/x^4)^(1/2),x, algorithm="fricas")

[Out]

integral(sqrt((a*x^4 + b)/x^4)/(a*x^4 + b), x)

________________________________________________________________________________________

Sympy [C]  time = 1.84975, size = 39, normalized size = 0.18 \begin{align*} - \frac{\Gamma \left (\frac{3}{4}\right ){{}_{2}F_{1}\left (\begin{matrix} \frac{1}{2}, \frac{3}{4} \\ \frac{7}{4} \end{matrix}\middle |{\frac{b e^{i \pi }}{a x^{4}}} \right )}}{4 \sqrt{a} x^{3} \Gamma \left (\frac{7}{4}\right )} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/x**4/(a+b/x**4)**(1/2),x)

[Out]

-gamma(3/4)*hyper((1/2, 3/4), (7/4,), b*exp_polar(I*pi)/(a*x**4))/(4*sqrt(a)*x**3*gamma(7/4))

________________________________________________________________________________________

Giac [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{1}{\sqrt{a + \frac{b}{x^{4}}} x^{4}}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/x^4/(a+b/x^4)^(1/2),x, algorithm="giac")

[Out]

integrate(1/(sqrt(a + b/x^4)*x^4), x)